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SUMMARY 

Constraints are put on the heeling moment and on the distribution of forces over mainsail, foresail, keel and 
rudder. A linear theory is developed by which the influence of these constraints on optimum spanwise circu- 
lation distributions can be calculated. The air and the water are considered to be incompressible. Allowance is 
made for the dependence of the wind velocity on the height above the watersurface. 

1. Introduction 

A sailing yacht moves at the boundary of  two media, air and water, which have a different veloc- 

ity in any chosen coordinate system. When sailing to windward, which will be discussed in this 

paper, a driving force is developed by exchanging momentum between the two media. For the 

description o f  the force production we use a linearized lifting-surface theory, It is clear that when 

we neglect the influence o f  the mast, the sails can be considered as lifting surfaces without thick- 

ness. The action of  the underwater part of the yacht (hull, keel plus rudder), which we will call 

the underwatership, is described by also considering it as a flat lifting surface o f  zero thickness. 

It terminates at the water surface which is assumed to be rigid and flat, so we leave aside the 

wavemaking. We hope that this mathematical model is not too crude to describe some aspects 

of  the hydro- and aerodynamic action of  the yacht. 

The thrust is needed to overcome the various kinds o f  resistance experienced by the yacht. 

There are the frictional and form resistance of  sails, rigging, hull and underwatership and the 

wave resistance. Furthermore there is the induced resistance which is inherent in force production 

by lifting surfaces o f  finite span. Since induced resistance depends on the spanwise circulation 

distributions of  sails and keel, and hence on their form, it can be minimized under certain con- 

straints on lift and heeling moment.  This optimization problem is tackled in this paper. 

In Fig. 1.1 we have drawn schematically the sails and the underwatership in a coordinate sys- 

tem fixed to the yacht. The sails have deviations of  O(e) from surfaces which would not disturb 

the incoming air velocity (U), which makes an angle a with the yacht's centreline C L . The centre- 

line is defined as the intersection of  the longitudinal plane of  symmetry with the watersurface, 

and it is assumed to be a fixed line with respect to the yacht. (We introduced here the lineariza- 

tion parameter e, whose magnitude hence is determined by the camber and local angles of  attack 

of  the sails). In order that the underwatership is able to act as a lifting surface and to prevent 
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flow separation, the angle X between C L and the undisturbed water velocity V must be small 
(we assume it to be of order e); k is called the leeway angle. 
The induced resistances of sails and underwatership are of comparable magnitude. In his well- 

known book [2], Juan Baader makes a rough estimate of the air resistance (with the exception 

of the induced resistance) of hull, rigging and sails of a Dragon yacht. He shows that, when sail- 

ing close to wind, this resistance becomes of the order of magnitude of the frictional resistance 

of the underwatership. Now, because the wave resistance acts in the direction of V, the total 
resistance will have a direction which is closer to V than to U. Then it is easily seen that the sails 
contribute more to the driving force than the underwatership. Therefore a can not be too small 
(sailing practice shows that in general a ~ 20). For the rest there is no fundamental difference 
between the hydrodynamic action of the underwatership and the aerodynamic action of the sails. 
We remark that the total force perpendicular to the total resistance must be zero. 

We will consider situations where a is O(e°). The situations where a can be assumed to be 
O(e) (perhaps 20 ° < a < 35 °) are discussed in [8]. In general we prescribe the total sideforce 
experienced by fore- and mainsail. However, because the free vortex sheets of fore- and mainsail 

do not coincide in our linearized theory, the induced resistance will depend on the way both 

sails contribute to the total sideforce. It can be useful to prescribe the sideforces of fore- and 

mainsail separately, for example when their areas differ substantially. So we will prescribe these 

sideforces separately and furthermore the total heeling moment around the yacht's centreline. 
Under these constraints the induced resistance is minimized. The same problem can be formulated 

for the single lifting surface representing the underwatership. This has already been discussed in 
[6], The two systems of lifting surfaces are coupled and the combined second-order thrust is 

optimized under the constraint of zero total sideforce and heeling moment, given the righting 

moment of the yacht as a function of the heeling angle. 
The water and air will be nonviscous and incompressible. The water will have a uniform veloci- 

ty. Milgram [4] approximately took into account the variation of the wind velocity with height 

above the water surface. Here we will consider a velocity profile consisting of a uniform part of 

O(e °) plus a part of O(e) which depends on the height above the watersurface. This seems not 

unrealistic when we consider for example the velocity profile given by March@ ([3], fig. 238), 

taking into account the fact that by the yacht's velocity the apparent wind has a still larger uni- 

form part. 
At least two objections against the proposed optimization problemcan be made. In the first 

place not all forces of O(e2), which contribute to the thrust, can be taken into account in a 
linearized theory. This will be discussed in the next section. Secondly we prescribe a sideforce, 
and hence also a thrust of O(e). Hence one may wonder what is the use of optimizing the O(e 2) 
contribution to the thrust, since theoretically we can give the sideforce every value of O(e). 
Then we can obtain every required thrust by making the sideforce large enough without bothering 
about the O(e 2) part of the thrust. In practice, however, there are limits to the forces which 
can be generated by lifting surfaces. This will be discussed in the numerical section. 

The shortcomings of the mathematical model used to describe the flow around the sails have 
been discussed extensively by Wood and Tan [9]. 

Journal of Engineering Math., Vol. 13 (1979) 289-316 



Optimization of the thrust of a yacht 291 

..3 
0 

r 

e., 

o 

© 

Journal of Engineering Math., Vol. 13 (1979) 289-316 



292 A.K. Wiersma 

2. On the O(e 2) contribution to the thrust of the forces generated by the saris 

In our linearized theory we prescribe lift forces and a heeling moment of O(e). For the sails this 
means that generally we also prescribe the O(e) part of the driving force (see Fig. 1.1). Forces 

and moments of this order of magnitude can be thought to be generated by spanwise circulation 

distributions of O(e) of fore- and mainsail (F /and r m respectively) which are placed in a uni- 

form flow of O(e°). The free-vortex sheets of fore- and mainsail induce velocities of O(e) and 

besides these there are the velocities of O(e) from the non-uniform part of the wind. Together 

these velocities of O(e) cause a force contribution to the thrust of O(e2). This contribution can 

be optimized by choosing the appropriate spanwise circulation distribution. The optimum cir- 

culation distribution can be realized in many ways by designing saris which have the proper 

deviations (of O (e)) from surfaces which do not disturb the air. In general, however, the asymp- 
totic expansion in the parameter e of the lift produced by the sails will have a non-zero term of 
O(e 2). Hence there will be another contribution of O(e 2 ) to the driving force, about which no 
exact information is supplied by a linearized theory. And up to now only in a linearized theory 
we can perform the mentioned optimization. 

We observe here that there is evidence that a single lifting surface, described by z --- c~ + 

+ efl(x~v), ((x,y) E $1, f l ( x y )  of O(e°), Fig. 2.1), which is placed in an unbounded medium, 
misses the O(e 2) term in the asymptotic expansion of its lift L. 
For, suppose the exact lift L has an expansion L(e) = eLi + e2L2 + e3L3 + e4L4 + . . . .  Now 

we change the sign of  e, then the new lift becomesL(-e) = -eL~ + e2L2 - e3L3 + e4L4 - . . . .  

It is easy to see that L(e) = - L ( - e )  and hence L2 = L4 = • • • = 0. In this context we also refer 

to Ashley and Landahl ([ 1], pp. 135-136). Now when a second lifting surface (z = c2 + ef2(x,y),  

(xy) ,  E $2) is added generally the identity L ( - e )  = - L ( e )  does not hold anymore. From these 
considerations we can cautiously make the presumption that the occurrence of an O(e 2) term in 

the lift is typically due to the interaction of the sails. Anyway its strength will depend on the 
chordwise pressure distributions along the sails. 

Now, given a spanwise circulation distribution,we can choose chordwise pressure distributions 
which optimize the O (e 2 ) term in the lift. Then there remains the question whether the optimum 

spanwise circulation distribution may have an adverse effect on the O ( J )  term in the lift of the 
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sails, or stated otherwise: are there non~)ptimum spanwise circulation distributions which, with 

the proper chordwise pressure distributions, will enlarge the total 0(6  2) contribution to the 
thrust. Unfortunately we cannot answer this question. However, we hope that the contributions 
of O(e 2 ) to the thrust which we take into account in the optimization process are dominant, so 

that it makes sense to optimize them. 
Finally we remark that when the yacht heels over a finite angle these considerations also apply 

to the single lifting surface representing the underwatership, because the rigid and flat water- 
surface acts as a mirror. Then the reflection of the underwatership forms the second lifting sur- 

face. 

3. Statement of the problem for the sails 

Consider a right-handed coordinate system X, Y•, at rest with respect to the undisturbed water. 
The X, Y-plane coincides with the watersurface which is assumed to be rigid and flat. The undis- 

turbed air has a velocity U(z) which makes an angle~* with the X,Z-plane. Its magnitude depends 
upon the height above the watersurface: 

U(z) = U* + f*(z). (3.1) 

We assume that f*(z) is of order e, where the linearization parameter e is defined by the shape 

of the sails as is done for instance in Fig. 2.1. 
We will restrict ourselves to yachts with one mast, where the foresail is guided along the 

forestay which ends at the top of the mast. The centreline C L of the yacht is parallel to the 
X-axis. In Fig. 3.1 the foot of the mast just has arrived at the origin of our coordinate system, 
hence C r coincides with the X-axis. The yacht heels, making an angle 3 with the X,Y-plane. It 
will have a velocity V ofO(e  °) in the negative X-direction. Furthermore it has a velocity ~V of 
O(e) in positive Y-direction. ~ is the small leeway angle, which we assume to be of O(e). 

Fig. 3.1 The 'physical' coordinate system. 
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The sails will cause disturbance velocities of O(e). In an unpublished note Sparenberg [5] 

remarks that the O(e) part of the velocity of the undisturbed air (f*(z), (3.1)) drops out of the 
linearized equations of  motion and the continuity equation. Hence, although the incoming air 

has continuously distributed vorticity of order e, we can use the concept of free vorticity shed 

by the sails. The function f*(z) enters, however, in the optimization problem and therefore it 
influences the optimum circulation distribution. 

In this paper we are interested in optimum spanwise circulation distributions under certain 

constraints on sideforce and heeling moment. Hence we may, since we use a linearized theory, 

without restricting generality replace the sails by lifting lines (abbreviated by 1.1's). The 1.1. repre- 

senting the mainsail is chosen along the mast extending from s = a to s = b, where s is a length 

parameter denoting the distance to the .~-axis. The lJ. representing the foresail coincides with 

a part of the forestay and extends from o = c to o = d. Here odenotes the distance to the point 

of attachment Eo f t he  forestay at the deck. Ehas  the coordinates (--e, 0, 0). The angle between 

forestay and mast is 7. 
The crew on board the yacht will feel the apparent wind. The O(e °) part Uo of this apparent 

wind has the magnitude 

1 

Uo = IUo I = (U~ 2 + V 2 + 2U~ V cos a * ) i  (3.2) 

and it makes an angle a with the X-axis: 

U~ sin a* 
= arctg U~ cos a* + V " (3.3) 

The O(e) part of the apparent wind, called f(z) has a strength 

1 

f-(z-) = I f(z)[ = {~2 ~)  + )t 2 V 2 __ 2)~ Vf*(z ) sin~*}~ 

and it makes an angle-a with the X-axis: 

(3.4) 

f*(z) sin a* - )tV 
= arctg f*(z) cos a*  (3.5) 

We remark that the direction of f(z) depends onzand differs from the direction of Uo in general. 

In order to obtain dimensionless formulae we divide velocities by U0, (3.2), and lengths by 

2, where £ is the height of  the mast. Furthermore we introduce a new right-handed coordinate 

system X, Y,Z which translates with respect to the old system with a velocity U0 and whose 
X-axis is in the direction of Uo (Fig. 3.2). In this coordinate system, lengths and velocities are 
nondimensional and we will use the same symbols as in Fig. 3.1, however we omit all bars, except 
the one of the angle ~, (3.5). The X, Y-plane again coincides with the watersurface. By the choice 

of X, Y,Z the yacht moves with a velocity of magnitude I in the negative X-direction, while its 

centreline C L makes an angle a,  (3.3), with the X-axis. In the X,Y,Z-system the yacht has a 
velocity XV of O(e) in the Y-direction. In our linearized theory it is consistently taken into 
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Fig. 3.2 The 'dimensionless' coordinate system X, Y, Z. 

,X 

account in the system X,Y,Z if  we consider also the O(e) part of  the apparent wind in this sys- 

tem. It has a strength f(£z) (= f(z)/Uo, (3.4)) and its x-, y-  and z-components are 

(f(P.z) cos(a- - a), f(£z) sin(a - a ) ,  O) (3.6) 

The coordinates of  the points A, B, C, D, E and T are 

A = (a sin/3 sin a ,  a sin/7 cos a ,  a cos/3), 

B = (b sin/3 sin a ,  b sin/7 cos a, b cos/3), 

C = ( ( - e  + c sin 3') cos a + c cos 3, sin/3 sin a, (e - c sin 3') sin a + 

c cos 3' sin/3 cos a ,  c cos 3' cos/3), 

D = ( ( - e  + d sin 3') cos a + d cos 3' sin/3 sin a ,  ( - e  + d sin 3') sin a + 

d cos 7 cos/3 cos o~, d cos 3' cos/3), 

E = ( - e  cos a, e sin a, 0), 

(3.7) 

T = (sin 13 sin a ,  sin 17 cos a ,  cos/3). 

On their way through the air the lJ. 's  leave behind flee-vortex sheets which remain on the 

place where they are shed except for small displacements of  O(e) which however cause errors of  

O(e 2) in the induced velocities. The influence o f  these errors upon lift and induced resistance 

is of  O(e 3) and can be therefore be neglected. F o r x - ~  ~ the direct influence of  the 1.1 .'s vanishes 

and the velocity induced by  the free-vortex sheets will only have components  iny-  and z-direction. 

The induced velocity q possesses for x -+ ~ a dimensionless potential  ~0 = ~o(y,z) which vanishes 

together with its partial derivatives f o r y  2 + z 2 -+ ~ :  

IO b~o b¢ 1 b¢ b~o zZ q=(O'qY 'qz )= ' by ' bz ; ~' by ' bz -+0 f o r y  z + ~ .  (3.8) 
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Fig. 3.3 
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Lines of discontinuity for ~ in a plane X = constant, far behind the lifting lines. 

When passing through the free-vortex sheets the function ~ has a discontinuity. Further it satisfies 

Laplace's equation A¢ = 0 everywhere in planes far behind the lJ. 's and perpendicular to the 

X-axis. This implies that the circulation around each free-vortex sheet separately has to be zero. 

The cuts formed in the Y,Z-plane by the free-vortex sheets of  fore- and mainsail are called 

L f  and L m respectively. In Fig. 3.3 we have indicated a + - and a - side on these cuts. The 
coordinates of/T, if,, . . . .  ~are  they-  and z-coordinates of A, B . . . .  T, (3.7). 

In the plane z = 0 (the watersurface) we have the boundary condition of zero normal velocity. 
In order to satisfy this condition automatically in the following analysis we assume the whole 

space to be riffled with air. Furthermore we introduce the reflection with respect to the X, Y-plane 

of the 1.1.'s, their free-vortex sheets and the velocity proriffe f (£ z )  of the O(e) part of  the appar- 

ent wind. We will agree that from now on in our analysis and calculations we will take into 

account the reflection of all these quantities. 

Now let us consider the forces of O(e 2) which we can calculate and which can contribute to 

the thrust. First there is the induced resistance Ri ,  acting in positive X-direction: 

1 ,T2,2 [¢]~ ~ d~+ d~" (3.9) 
R i = 2 P u ° ~  L L m -~n " 

Here ~and ~are length parameters along Lf and L m giving the distance to r a n d  the X-axis re- 

spectively (Fig. 3.3.). By [~]~ we mean the jump o f ¢  over Lf  or L m and 3~On means differen- 

tiation in the direction of the normal on Lf  or L m , which points from the - to the + side. 
Furthermore there is the force experienced by the lJ. 's on their w~y through the O(e)-part 

o f the apparent wind (3.4). This force, called K, has x- and y-components K x (positive in negative 
X-direction) and Ky (positive in positive Y-direction): 
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= 2 2  t ff(~kfcos/3~sin(-d-a)[~o]~d'~+ K x PUo~ cos/3 kf L- 

k m Lfm f(9~k m cos/3s ~) sin (~--a)[~o1+ a ~ / ,  

Ky= pUoZ~2cos/3 t kf rfff(~kf cos/3~ cos (a -a ) [~o]+  d~'+ 

(3.10) 

%,, L f  f(~k m cos~s%cos(~-cO[¢]+~t 
where 

1 

kf = ( c o s  2 /3 + (sin/3 cos a - e sin a) 2 ~2, 

I 
krn = {COS 2 /3 + sin 2 13 cos2a} ~ . 

(3.11) 

We emphasize that on infinitesimal elements of the 1.1.'s this aerodynamic force is perpendicular 
to (3.6) and hence its local direction depends upon the height above the watersurface. 

We prescribe the O(e) part of the aerodynamic sideforces experienced by the fore- and main- 
sail separately and the O(e) part of their combined heeling moment. The sideforces are the forces 
in Y-direction, positive in positive Y-direction. When the prescribed sideforces on fore- and main- 
sail are Ff and F m respectively, we have the following constraints on ~0: 

Fl(~p)=p U2o ~2 cos/3 kf L f  [~1+ do'=Ff, (3.12) 

F2(¢)-PU 2 £z cos/3k m f [~]+ d'~=Fm " (3.13) 

The heeling moment is the moment around the yacht's centreline, positive if it makes the yacht 
heel towards the positive Y-axis. Its prescribed magnitude is M h , so ~p also has to satisfy 

M(~)=p U2o ~3 COSa t Lfm(o~[~]+ d'o+ Lfm'S[~o]+ d'~t=M h , 
(3.14) 

where m ( ~  = o'+ e kf sin a(sin 13 cos a - e sin cQ. 

4. The optimization problem for the sails 

We want to optimize the O(e 2 ) contribution to the thrust of the terms given in (3.9) and (3.10). 
The direction of the thrust makes a prescribed angle 6 with the yacht's centreline (Fig. 3.2), 
hence we have to optimize the functional G6p). 
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G(¢) - K x cos(o~ - 6) + Ky sin(a - 6) - R i cos(a - 6). (4.1) 

The angle ~ is determined by the total resistance experienced by the yacht. This resistance cannot 
be calculated in the mathematical model we use, so ~5 is one of the parameters of the problem. 

In (3.12), (3.13) and (3.14) we gave the constraints which have to be imposed on ~0. There- 
fore we can introduce the Lagrange multipliers Xf cos(a - 5), Xrn cos(or - 6) and Xh ~-1 COS/~ 
cos(a 6) and solve the equivalent problem of optimizing the functional J(¢), 

J(~p) = G (~p) + Xf cos (a - 5) F1 (9) + Xm cos(a - 5) F2 (~p) + X h £-1 cos/3 cos(a - 6)M(~0) 
(4.2) 

still subject to the constraints (3.12)-(3.14). 
A necessary condition for J to have an extreme for some ~o is that the first variation of Jwith 

respect to this ~o(6 J(~0)) vanishes. This yields the relation 

6J(¢)=pU2o ~2 f [ 8 ¢ ] ~  { k f c o s 3 f ( ~ k f c o s 3 ~ s i n ( - f f - 8 ) +  

( cos(a - 6) ?~fkf cos/3 + ~h cos/3 cos a m('o ~) - ~ da'+ 

pU2o 9~ 2 Lmf [~q0]+ tkm cos~f(~krn cosfls~ sin(-~ - ~ )  + 

(4.3) 

( c o s ( a - 6 )  ~mkm cosO+?~h cosOcosal~' l-  -~n dT=0. 

We can choose a 8~o for which [6~0]~ > 0 in a small neighbourhood of an arbitrary point onLf  
or L m and [6 ~p]~ = 0 elsewhere (see [6]). Because we can choose this point anywhere on Lf or 

L m we find that both expressions between braces in (4.3) have to be zero on the line segments 
on which they are def'med. In order to obtain simple formulae we introduce the functions 

~gi(y,z), i = 1 . . . . .  5, which satisfy At~i = 0 except on Lf  and L m . Furthermore they vanish 
together with their partial derivatives fory 2 + z 2 ~ oo and on Lf  and L m holds 

1 onLf  { 0  onLf  
0~ol _ . ~ , 0 2  = ; 

On 0 onL m ' On 1 on L m 

O~os J m(a") onLy 

On - [ "~" on L m 

(4.4) 

On 

k f  f (~k f  cos3o')sinS onLf  

k m f (£k  m cos/3 o'~) sins o n L  m 
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O~Ps I k f  f(9.kf cos/3 o~) cos ~- on Lf  

On - ] krnf(~k m cos/3"~)cos~ o n L  m 

By the definition of  ¢4 and ~05 on Lf  there holds the identity 

O 
(¢4 cos 6 -- ~'s sin 6) -- k ; f (~k ;  cos ~ 0-'3 sin (&-- 6) 

O---n- 

(and the analogous identity on L m ). We stress that this linear combination of ¢4 and ~Ps is not a 
potential function forf*(z) ,  (3.1), since f*(z)  cannot possess a potential function. It gives, how- 
ever, the way in which this non-uniform part of the undisturbed wind is felt by the lifting lines 
and their free-vortex sheets. 
The potential ~o for which (4.3) holds can now be written as a linear combination of  ~0i: 

~=c°s t3{ ) t f k f~ l  +Xmkm~°2 +Xh COSa tP3 +(~P4 COS6 --tp5 sin 6)/cos(a -- 6)} (4.5) 

The constants Xf, Xrn and X h are found by inserting (4.5) in (3.12) - (3.14) and solving the 
three resulting linear equations. For this purpose we first define the following quantities which 
occur in the various integrals over ~0 i and O~j , i, j = 1 . . . . .  5 : 

On 

lift = L j [¢i O¢/ d~,, i, /=  1 5 
I 

f O~l " (4.6) Iklm : L m  [¢k]+ ~n d~, k , l =  1 . . . . . .  5, 

[Pq = L f  [¢P]+ ~ n  do+ Lmf [~PP]+ ~ n  d~,, p , q = 3  4 ,5 .  

By the properties of the potential functions ~i, (4.4), we find that Ii2 f = I i l  m --0 (i = 1 . . . . .  5). 
Furthermore, by using Green's second formula and A¢i = 0 we can derive several relations between 
these quantities, which will be used henceforth. For example we find 

ff [ ~1 O~I ; [~2 ]+ -- 
Izlf = L 92 ]+ On - Lf  + Lm On 

f 
Lf  + Lm ~n Lm On 

Next we write, still in order to obtain simple formulae, the prescribed sideforces and heeling 
moment (3 .12)- (3 .14)  as 

Ff  =PU2o ~2 cos 2 j3k f~f ,  F m =pU2o ~2 cos 2 {3kin Hm, 

Mh = PU2o ~3 cos/3/l h cos a. 
(4.7) 
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Here we introduced/af,/am and/ah which can be computed when Ff, F m and M h are given. 

Now (3.12), (3.13) and (3.14) yield the following set of equations for Xf, Xm and ~h 

~ l l f l 2 1 f I 3 1 m ) t ~ ? f ) ~ i l  / ! 4 1 1  t I 5 1 f ~ .  

I21f I22m 132 Xmkm = /am COS (a -- 6) 42 + sin (a - 8) s2m. j 

31f 132m 1 3 3 i  \ X h  c°sa] ~¢43/  \ 1 5 3 /  

(4.8) 

We can solve these equations and insert the result in the expression for 9, (4.5), which then be- 

comes a function of Vf,/am and/a n. With this 9 we find for the induced resistance Ri, (3.9"): 

1 2 ~2 2 
Ri = ~ OUo c°s2/3 {Cffldf 2 + Cram ~am 

where 

2 
+ Chh /ah + 2elm /af ~am + 2C~ Ill #h + 

2Cmh ~am /ah + (Cl COS 2 8 -- C2 sin 8 COS 8 + c3 sin 2 6)/cos2(o~ -- 6)} • det -1 

2 2 2 
Cff = 122 m 133 -- I32m, Cram - I l l f  133 -- I31f, Chh = I l l f  122m -- 121f, 

(4.9) 

Cfm = I31fI32m - 121fi33, Cfh = I21f132 m -- I31fI22m, Cmh = I21£I31 f -- Ill fI32m, 

det = 

I l l f  1211" I31f 

I21f I22m I32m 

131 f I32 m 133 

C 1 = 144 det - I41fA is - 142m A2s - 143 A3s, 

c 2 = 214s det - 141fA le - 142m A20 - 143 A3c - I s l fA  is -- Is2m A2s - Is3 Aac, 

c3 = Iss det - Is l fA lc - I52m A2c - 153 A3c, 

h i s  = 

I41f I21f I31f 

142 m 122 m 13.2 m 

143 I32m 133 

= ISl£ 12If 13If 

, A l e  Is2m I22m I3~m 

Is3 I32m I33 
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Z2s  = 

I l l f  141f I31f 

I21f I42m 132m 

I31f 143 133 

, A 2 c  

= I l l f  I51f I31f 

121f I52rn 132m 

I31f 153 133 

A 3 s  = 

l l l f  121f I41f 

I : l f  122m I42rn 

131f 132m 143 

, A3c 

= l l l f  I2tf Islf  

I21f 122m Is2m 

131f I32m 153 

(4.10) 

We observe that the induced resistance is a quadratic function of the prescribed sideforces and 

heeling moment  and that the influence of the non-uniform part of  the undisturbed wind is only 

present in the term which does not depend on ~uf,/a m or/a h . 
The O(e z) contribution to the thrust due to the motion of the lifting lines through the O(e) 

part of  the apparent wind becomes, using (4.5), (4.8) and (3.10): 

K x cos (a - 6) + Ky sin (a - 6) = 

PU2o ~2 cos 2 13 det -1 ~cos 6 (l~f A is + tam A2s + t~h A 3s} - 

sin 6 (tlfAlc + t2rn A2c + 12 h A3e} + 
(4.11) 

(c 1 cos 2 6 - c2 sin 6 cos 6 + c3 sin 2 6)/cos(a - 6)} 

where the various constants are already defined in (4.10). 

We remark that all terms in (4.9) and (4.11) are O(e 2 ), as they should be.Ff ,  F m and M h are 

O(e),  hence by definition (4.7), gtf, lam and gt h are O(e). Furthermore f*(z), (3.1), is assumed 
to be O(e). Therefore ~04 and Cs, (4.4), are O(e),  from which it follows that Ais and Aic , 
(4.10), are O(e) and ci, (4.10), are O(e2).  

Finally the opt imum circulation distribution of fore- and mainsail, I~f and F m respectively, 
as function of the length parameters (r and s (Fig. 3.2) are 

vr(o) = Wo~ [~(k I o)]?, (4.12) 

rm(s) = Uo~ [ ~ O ( k m S ) ]  + • (4.13) 

Here tp is the opt imum potential function (4.5), and the jump [~o]+ is calculated over the free- 
vortex sheets of  fore-and mainsail respectively. 

From (4.5) we see that when all parameters and variables have been fixed, apart from the 
sideforces and the heeling moment ,  the opt imum potential ~ is a linear combination of only the 
5 functions ~0i, defined in (4.4). Hence also the opt imum circulation distribution PT, (4.1 2), and 

F m , (4.1 3), can be written as linear combinations of  the 5 circulation distributions which belong 
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to ¢i" The coefficients of the ¢i are functionals of the ~0 i themselves and they depend linearly on 

the applied sideforces and heeling moment (4.7) as can be seen from (4.8). 

5. The formulae for the underwatership and the coupling of the two systems 

The optimization problem for the underwatership is a rather simple special case of  that for the 

sails. The leeway angle k between C L and the uniform water velocity V(Fig. 1.1) is assumed to be 
of O(e), so in a linearized theory we cannot distinguish between the free-vortex sheets shed by the 

keel and a separate rudder. Therefore it is meaningless in the optimization problem to prescribe 

separately the sideforces experienced by keel and rudder, and we can represent the underwater- 

ship by one lifting line which terminates at the watersurface. Here we will give only the optimum 

formulae, a detailed description of the optimization problem can be found e.g. in [6]. 

Velocities are nondimensionalized by V and lengths by £w, which is the depth of the keel. 

The sideforce F w is prescribed perpendicular to C L and the heeling moment M h is around C L. 

They are written as 

Fw =P V2 £wZ cos2/3Uw, M• = o V  z £ w3 cos/3/~. (5.1) 

Then we find for the mimimum induced resistance Ri, which acts parallel to C L and hence, in 

our linearized theory, in the direction of V (Fig. 1.1): 

2 2 Ri =IoV2 Qw2 c°s2 fl (llw122w -- 21AwlAh I21w +/2h 2 I l lw)/ ( l l lw I22w --121w)" (5.2) 

The quantities Iij w (i, j = 1,2) are defined in the same way as those in definition (4.6). In fact 

there holds Iij w =Ii/ m (i, j = 1,2) when in the case of the sails the foresail is absent and the 
mainsail extends from the watersurface to the top of the mast. 

Now we consider the propulsion unit, consisting of the two coupled systems of lifting sur- 
faces in the air and the water. In Fig. 5.1 the relevant forces and moments are drawn in a coor- 
dinate system X, Y fixed to the yacht. 

Where confusion can arise we give quantities a superscript a or w, depending on whether they 

belong to the air or the water, respectively. 

The undisturbed water velocity V makes an angle k of O(e) with the X-axis. The O(e °) part Uo, 

(3.2), makes an angle a, (3.3), of O(e °) with the X-axis. The direction in which we want to op- 

timize the thrust makes an angle 6 with the X-axis. 

Perpendicular to this direction the resultant 'sideforce' must be zero up to and including O(e). 

With (4.7) and (5.1) this yields 

a , ,2 ,~a 2 
/9 UO~. COS 2 /3(I,l?f-I-],lmkrn)COS(Ol - 6 ) = p  w V 2 ~ w2 cos2/3~w cos~. (5.3) 

The righting moment M r is mainly determined by the form of the hull and the distribution of 
the weight in the keel. It is assumed that it can be written as a function of the heeling angle/3 only: 

3 
Mr(/3):pw V 2 ~w m(~) (5.4) 

where m (/3) is a given function. 
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This righting moment must balance the heeling moment of O(e), exerted on the sails and the 
keel. With (4.7), (5.1) and (5.4) we find 

3 3 3 
a ,  ,2-a cos/3/a h w m (/3). (5.5) p UO ~ COS~COSOtldha+pw V2 ~w =pw v29W 

The O (e  2 ) part of the thrust about which we have information, called T(e 2), is composed of 

the forces K x and Ky,  (3.10), which are due to the nonuniformity of the undisturbed wind, and 

the induced resistances of the sails Ri a and the underwatership Ri w . In the optimum case T(e 2) 

follows from (4.11), (4.9) and (5.2): 

T(e 2) = K x cos(a - 6) + Ky sin(a - 6) - R i  a cos(a - 6) - Ri TM COS 6. (5.6) 

Now #w and 12h TM can be solved from (5.3) and (5.5). We insert them in (5.6) and there remains 

for T(e 2) a function o f # f ,  lam and/ah a . 
The O(e) part of the thrust T(e) is with (4.7) and (5.1): 

T(e) _a r r 2oa  2 =p  Uo~ cos 2 [3(lafkf+lamkm)sin(a - 6 )  +pWV2~W2 cos 2/3~w sin6. (5.7) 

Perpendicular to T there remains, again apart from an unknown contribution,which is discussed 

in Section 2, a sideforce of O(e 2), called F(e 2 ), which is positive in positive Y-direction: 

F(e  2 ) = Ky cos (a - 6) - K x sin (a - 6) + Ri a sin (~ - 6) - Ri  w sin 6. (5.8) 

We remark that in our mathematical model the two systems of lifting surfaces can only influ- 

ence one another by the sideforce and heeling moment they generate. This is due to the reduction 

of the watersurface to a rigid and flat interface between the two media. Then a variation in the 

circulation distribution of the underwatership, which leaves the sideforce and heeling moment 

unchanged, is not felt by the sails, and vice versa. If the watersurface had been treated as a free 

surface such a variation would change the shape of the watersurface, which then would be felt 

by the circulation distribution of the other system. For this reason we can optimize the sails 

and the underwatership separately and couple them afterwards by the requirements of zero side- 

force (5.3) and zero heeling moment (5.5). 

6. Numerical results 

We will apply our formulae to the yacht which has also been investigated in [8]. The height of 

the mast, ~a, is 12 m and the depth of the keel, ~w, 1.7 m. Its righting moment Mr(r), (5.4), is 

3400 sin/3 kg m. 
The true wind will have a velocity of 9 m/s at a height of 10 m, which corresponds with force 

5 on Beaufort's scale. Wieghardt [7] shows that for this wind force a good approximation for 

the wind profile U(z), (3.1), is 

U(z) = U(10) • ~ = 9 lO m/s. (6.1) 
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The subdivision of this velocity profile in a uniform part of O(e °) plus a part of O(e) is rather 

arbitrary. To get an idea of what we call velocities of O(e) consider a chordwise sail (section) 

with camber ratio of 0.10. Placed in an apparent wind of say 9 m/s it will feel normal velocities 
up to 2 - 2.5 m/s, which we have to consider as being of order e when we want to use linearized 

lifting-surface theory. Now we can make various choices for U~', (3.1), and hence forf*(z) .  
The choice will influence among other things Uo, (3.2), a,  (3.3), kf and k m , (3.11), the func- 
tions ~0 i, (4.4), and the quantities ~f,/l  m and ~h, (4.7), when Ff, F m and M h are given. Obvious 
values for U~ are U(]-), U(I-2) or the average of U(z) over 12 metres (i.e. the height of the mast). 

Then U* and f* ( z )  are respectively 

(a) u~=7.15, f*(z)=9 ~- 1-°-7.15, 

F fo (b) u*--9.17, f*(z)-=9 ]-6 -9.17, (6.2) 
1 

(c) U~ = 8.33, f * ( z )  = 9 z ~% - 8.33. 

In (6.2c)f*(z) is negative in the whole range of interest, whereas in (6.2a) it is positive f romz= 1 m. 

We will compute for these three values of Ug the optimum contribution by the sails to T(e 2), 

(5.6), when the yacht heels over an angle ~ = 15 ° , and ~* (Fig. 3.1) is 60 ° . 

Before giving the numerical results we want to discuss the consequences of the choice of U~ in 

some detail. Suppose the sideforce and heeling moment of the underwatership are given and we 

take for U~ the value 7.15 m/s, (6.2a). Then we calculate the optimum ~0, (4.5), satisfying (5.3) 

and (5.5), and we find the optimum circulation distributions of the sails l~f and Pro, which are 

given in (4.12) and (4.13). Next we construct sails which will have these spanwise circulation 

distributions, and we place them in the wind profile U(z), (6.1). 

If now we describe the wind by a Ug which is for example 9.17 (6.2b) instead of 7.15 these 

sails would experience a first-order sideforce which is tOO large by a factor (Uo (1917)/Uo 
(7.15)) 2 if Uo( ')  is the apparent wind velocity (3.2), and hence the first-order balance equation 

(5.3) is violated. The surplus of sideforce, however, is of order e 2 , since by assumption the dif- 

ference between 9.17 m/s and 7.15 m/s if of order e. We tacidly used already the fact that the 

difference in the apparent wind angles ~(3.3) is also O(e). Furthermore we observe that when 

U~ is 7.15 m/s, f*(z)  is positive over most of the span and hence it will yield a positive contri- 

bution of order e z to the sideforce (5.8). On the other hand for Ug= 9.17 m/s , f*(z )  is negative 
everywhere along the span, so it will yield a negative contribution ofO(e 2) to the sideforce which 

counteracts the aforementioned surplus. The same reasoning holds for the heeling moment. Con- 
cluding we remark that the difference in the spanwise circulation distributions belonging to the 
various values of U~ are of order e 2 . 

In order to obtain sideforces and moments with realistic values we consider until further 

notice the underwatership as a lifting surface which approximates the projection of keel plus 
hull on the longitudinal centre plane of the yacht (Fig. 6.1a). (In [8] this underwatership is 

called A II). 
Hence we do not use an optimum underwatership, as is done in Section 5. Of course the balance 

equations (5.3) and (5.5) must be satisfied, however, now/~w and ~h w are determined by the 
shape of the underwatership. Then sideforce L, heeling moment M and induced resistance D of 
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the underwatership (Fig. 6.1b) can be calculated as functions of/3 and X, the leeway angle. We 

introduce lift-, moment- and drag coefficient for the underwatership,cQ, c m and ca, respectively, 

3 = O TM V2~ w2 ;k 2 (6.3) L=pWV2~W2 cos2 ~'Ac~, M=pWV2~ w cos/3~kCm, D cos2/3 c a. 

These coefficients are still functions of the heeling angle/3. Their dependence on/3 is given in 

Fig. 6.1c. 
Another approach would be to use experimental data for L, M and D as functions of/3 and X, 

however, we do not have these at our disposal. 

Now for/3 = 15 ° we find from Fig. 6.1c c~ = 1.204 and c m = 0.516, hence in the balance 
equations (5.3) and (5.5) we have to substitute/2 w = 1.204 ~ and ~w = 0.516 ~. The lifting lines 

representing the fore- and mainsail extend from o c = 0.02 tETI t o  t7 D = 0.98 IETI and from 

s A = 0.05 IOTI to s B = 0.98 IOTI respectively (Fig. 3.2). The dimensionless distance of the foot 
of the mast to the point of attachment of the forestay at the deck e, (3.7), is 0.3. 

Finally we have to fix values for V and ~. In the real sailing world these are interwoven with 

each other, with U(z), the yacht's resistance etc., but we simply choose V = 4 m/s and ~ = 2 °. 

In Fig. 6.2 we give the O(e 2) contributions of the sails to the thrust (5.6) and the sideforce (5.8) 

for the three values of U~ in (6.1). The computations are performed for three values of 6, the 

angle between C L and the thrust. On the horizontal axis we have plotted the quotient v = F m/Ff 
which gives the ratio of the sideforces exerted by main-and foresail; v ranges from 0 to 1. 

We see that for 6 = 0 °, i.e. thrust parallel to the yacht's centreline, T(e 2) is a slightly decreasing 

function of v and for 6 = 12 ° or 6 = 24 ° it has a weak maximum on the interval. 0 < v < 1. The 
variations, however, are small. This is not unfavourable, since it is a well-known fact that in the 

case of  interacting sails the lift of the foresail tends to increase at the cost of  the lift experienced by 

the mainsail. Hence we can distribute the sideforce over fore- and mainsail in a realistic way with- 

out too ill effects for the second-order thrust. Fig. 6.3 shows the spanwise circulation distributions 

P/£, (4.12,4.13), for 6 = 12 °, v = 0,6 and the three values of U*, (6.2a- 6.2c). The circulation is cal- 

culated along contours in planes perpendicular to the mast as will always be done. We see that 

the graphs are roughly similar. In the following calculations we will choose U~ = 8.33 m/s. 
From Fig. 6.4 it follows that, although T(e 2) depends only weakly on v (the ratio ofF m and 

Ff), the spanwise circulation distributions F/Uo~ of fore-and mainsail vary strongly with v. We 

observe that for v ~< 0.6 the circulation of the mainsail becomes negative near the top of the 

mast. This implies negative pressure differences over the sail, which it can only withstand by a 

'negative' curvature. These situations, however, should be avoided because the appropriate sail- 

forms may be expected to be rather unstable. Moreover where the circulation of the mainsail is 

negative that of the foresail must be extra positive which requires a large camber near the top of 

the sail, which enlarges the chance of flow separation. We emphasize, however, that these graphs 
show that 'backwinding' of the mainsail is not necessarily harmful for the performance of a sailing 
yacht. 
Not only with a fore- and mainsail of comparable span, but also when the span of the mainsail 
is considerably smaller than that of the foresail, the second-order thrust is rather independent 
of v. Moreover, given a required sideforce and heeling moment, the dependence of the second- 
order thrust on the span of the mainsail is small. This is shown in Fig. 6.5, where we give the 
dependence of T(e 2) on the angle 6, still with the same choice of the parameters only for dif- 
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ferent lengths of the mainsail. For s a = 0.05 IOT[, s B = 0.8 lOT[ we take v = 0.6 and for s A = 

0.05 [OT[, s B = 0.6 [OT[, v is 0.4. The graph for s A = 0.05 [OT[,s B = 0.98 [OTI,v = 0.8 is not 

drawn since it differs only 3 - 4% from the one of s B = 0.8 [OT[ etc. Now the question arises 

whether there will be much difference between the second-order thrust of two sails and of one 

sail with the same effective span. By effective span we mean the span of one sail,whose projected 

area on the X,Z-plane covers the projected areas of fore- and mainsail on the X,Z-plane. This 

concept appears useful, because it leaves intact the interval in z-direction which is filled up with 

free vortices and also the smallest gap between sails and water surface• This gap is very important 

as has been shown in [6]. Therefore in Fig. 6 5  we also give the graphs for one foresail, o c = 

0.02 [ETI o D = 0.98 lET[ and one mainsail, s A = 0.02 IOTI s B = 0.98 [OT[, separately. We ob- 

serve that a combination of two sails is slightly better than one fore- or mainsail with the same 

side force and heeling moment.  The superiority of one foresail over one mainsail can be explained 

by the fact that it is 'less heeled' (Fig. 3.3) so that it has more freedom with respect to the con- 

straint on the heeling moment.  

Next we consider the dependence of the heeling moment on v where only constraints are 

imposed on the two sideforces F [  and F m . Then in the optimization problem of Section 4 we have 

to ignore Xh, (4.2), and/~h, (4.7). The potential function ~03, (4.4), does not occur and neither 

do the quantities l i f  t ,  I p q m,  (4.6), in which one of the indices is 3. Now we obtain in a simple 

way the formulae for the induced resistance Ri ,  (3.9), and the second-order forces K x and Ky,  

(3.10), by inserting in (4.9), (4.10) and (4.11)/1 h = 0, I31 f = 132 m = I43 = Is3 = 0 and I33 = 1. 

By this the influence of the heeling moment  on Ri,  K x and K v disappears (as it should), where- 
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as we can still use the solution of the three equations (4.8) for Xh, ~ 'm and tan, for now the third 

equation of (4.8) reads Xhcos ~ = 0. The heeling moment is found by inserting the optimum 

potential ~0, (4.5), in the expression for the heeling moment (3.14). Once again we consider the 
set of  sails used for Fig. 6.2 with the same leeway angle, heeling angle etc. In Fig. 6.6 the de- 

pendence of the heeling moment on v is shown for various spans of the mainsail. For s B 

0.8 IOTI the heeling moment is a decreasing function of v. When reefing the mainsail it is rea- 

sonable to let v decrease proportional to the area of the mainsail. If, for s B = 0.98 IOTI, v is 0.8 

the corresponding positions on the graphs for smaller s B are marked and we observe that reefing 
the mainsail is favourable although the sideforce of the foresail has to increase, since the same 
total sideforce must be produced. We do not give here the optimum second-order thrust. We only 
remark that it is larger than when also the heeling moment was prescribed, since here the class 
of allowed functions ~, (4.5), is greater. 

At the end of this section we want to consider the thrust T(e2), (5.6), for the case where also 

the circulation distribution of the underwatership can be chosen freely. We begin by choosing 

v, hence the distribution of sideforce over fore- and mainsail is fixed. Next we solve gf and 

tab a from ( 5 . 3 )  and (5.5) and insert their values in (5.6), by which T(e 2) becomes a quadratic 

function of taw and tab w. Now we can find the ta w and tab TM for which T(e 2) assumes its maxi- 
mum. When we have fixed the variables which we can fix, i.e. the span and position of the 

lifting lines, the true wind angle a*, the wind profile U*(~) and the righting moment Mr(r) , the 

so found maximum T(e 2) still is a function of the yacht's speed V, the leeway angle X, the 

heeling angle/3 and 6. The procedure in [8] was to choose V and then find for various values of 

the apparent wind angle a the X and/3 which yield maximum thrust. This thrust was compared 

with the thrust obtained when optimum sails are coupled with an underwatership of given shape, 

such as in Fig. 6.1a. Here we will not go through all these computations. We will check whether 

the second objection made at the end of the Introduction concerning the use of optimizing the 

second-order thrust is serious. To this end we compute for a special case the taw and tab TM which 

give an optimum T(e 2) and we examine whether they are realistic. By this we mean that the 

m ~ 

~oo 

F i g .  6 . 6  

~ -(9o 

.l. .q 

D e p e n d e n c e  o f  h e e l i n g  m o m e n t  o n  a n d  t h e  s p a n  o f  t h e  m a i n s a i l .  8 = 18  ° , ~-* = 6 0  ° , ~ = 15 ° , X = 2 ° . 
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connected sideforce and heeling moment  are comparable with those which can be generated by 

an existing underwatership,  in our case the one from Fig. 6.1a. 

The sails are the ones used for Fig. 6.2, the true wind angle ~* is 70 ° , the yacht 's  speed V is 

4 m/s,  the direction of  the thrust 8 is 14 °, and u is 0.6. In Table 6.1 we give the optimal Ow and 

Oh w for heeling angles/3 ranging from 10 ° to 35 °. Computat ions show that for leeway angles 

X between 0 ° and 4 ° the variations of  these Ow and Oh w are within 1%. The allied second-order 

sailforces show variations in the order o f  5%. For 3, = 3 ° and ~ = 25 ° we fred for this sailforce a 

value of  - 2 9 . 1 2  kgf. 

10 ° 
15 ° 
20 ° 
25 ° 
30 ° 
35 ° 

taw 

0.0188 
0.0313 
0.0453 
0.0613 
0.0804 
0.1043 

#h w h T(e 2 ) ta w #h w 

0.0109 
0.0148 
0.0214 
0.0289 
0.0379 
0.0489 

2 ° -64.67 
2.5 ° -40.18 
3 ° -30.30 
3.5 ° -35.02 
4 ° 54.35 

0.0404 
0.0505 
0.0606 
0.0708 
0.0809 

0.0173 
0.0216 
0.0259 
0.0302 
0.0345 

TABLE6.I TABLE6.II 

In Table 6.II we have calculated for a set of leeway angles the second-order sailforces of  the 

same yacht  in the same position (/3 = 25°),  only now we used the non-opt imum underwatership 

from Fig. 6.1. The values of  Ow and Oh w for the various values of  X, which can be deduced from 

(5.1) and (6.3), are also given. We observe that the maximum T(e 2) is attained for X ~ 3 ° and 

that its value differs about 3% from the opt imum value of  - 29 .12  kgf. Furthermore we see that 

the corresponding Ow and Oh w are of  a magnitude which is comparable with the opt imum Ow and 

Oh w • This means that the mentioned objection can be refuted,  i.e. the opt imum Ow and Oh TM , 

and hence the opt imum sideforce and heeling moment ,  have values which are compatible with 

those attained in real sailing situations. So perhaps this theory can be used to gain some driving 

force by applying slight alternations in the shape of sails and underwatership. On the other hand 

one can say that the model we used here for the underwatership is almost opt imum in the sense 

of  opt imali ty  used here. 

7. The asymptotic case of  sailing close to wind 

In this section we want to investigate the mathematical validity of  the asymptotic theory for 

sailing close to wind. This theory,  which is described in [6], assumes that the true wind angle 

~-* (Fig. 3.1) is O(e).  The consequences of  this are the following. The apparent wind angle c~, 

(3.3), is O (e), so that within the accuracy of  a linearized theory the X- and X-axis coincide (Figs. 

3.1 and 3.2). Therefore the two sails are not  distinguishable anymore and we can represent them 

by one lifting line. From the non-uniform wind (3.6) only the O(e) part of  its y-component  

( - X V / U o )  yields a second-order contribution to the thrust T(e2) ,  (5.6), because now also the 

angle 3 (Fig. 5.1) is O(e).  For  this reason now the contribution of  the sideforce to the thrust 

in a 'direct ion '  6, which was O(e),  (5.7), becomes O(e 2). Hence now the strength of  the total 

driving force is only O(e z) and the optimization problem is reduced to finding the maximum 
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second-order thrust of  one lifting line, which we locate along the mast, and whose direction of  

motion makes an angle of  O (e) with the direction of  the apparent wind, which now has a uniform 

velocity profile. If we use the same notations as before and apply the proper linearizations, the 

asymptotic thrust Ta(e 2) of the sails in a direction 6 is found from (4.7),(4.9) and (3.10): 

Ta(e 2) = F m ( ~  - 6)  + K x - R i  a (7.1) 

where, as mentioned before, the force K x is due to the velocity component - k F / U o ,  and its 

magnitude is - k F / U o ' F  m. Allowance for k can also be made by reducing the apparent wind 

angle a with an amount of  - k F / U o ,  as can be seen most easily from formula (7.1). In fact this 

has been done in [8]. In the present approach we see that the leeway angle causes a resisting 

force. 

The thrust Ta(e 2) has to be compared with the sum of  the first-and second-order contribu- 

tion by the sails to the thrust. This sum, which we call Ts, follows from (4.7), (4.9) and (4.11): 

T s = ( F f + F m ) s i n ( o ~  - 6 ) + K  x cos(u  - 6 ) + g y  sin(a - 6 )  - R i  a c o s  (0.~ - -  6 ) .  (7.2) 

We will consider the same pair of  sails as in Fig. 6.2 with v = 0.8. In the asymptotic theory the 

one lifting line along the mast extends from s A = 0.02 IOTI to s n = 0.98 IOTI, so that it has the 
same effective span as the two sails. The heeling angle/3 is 15 °. The underwatership of  Fig. 6.1a 

is used to fix the constraint on sideforce and heeling moment.  The leeway angle k is 2 ° and V is 
3 m/s. Of course it is not realistic to assume that k and V remain constant when the true wind 

angle ~* decreases. It is to be expected that with decreasing a* ,  V will also decrease whereas 

k increases. Here, however, we want to go into the mathematical, not the physical, validity of  

the asymptotic theory, so we keep ~ and V constant throughout the computations. In Fig. 7.1 

we show T a and T s for 6 = 3 ° , 9 °, 15 °, while the true wind anglea* ranges from 20 ° to 50 ° . With 

a boat speed V of  3 m / s  the apparent wind angle a (3.3) then ranges from 15 ° to 37 °. 

Fig. 7.1 
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For 6 = 9 ° the graphs of  T a and T s differ less than 3%. In general/5 will be greater than 3 °. Then 

we observe that for 15 ° < a < 3 5 ° the asymptotic theory gives a good prediction of  the optimum 

thrust. Anyway it can be used to study trends such as the influence of  the gap between sails 

deck [6], and the profit of  optimizing the circulation distribution of the underwatership [8]. 

8. Concluding remarks 

In this paper we consider a sailing yacht as a single propulsion unit consisting of  two coupled 

systems of  lifting surfaces with zero thickness. This enables us to use a linearized lifting-surface 

theory, by which we can calculate some important forces acting on the yacht,  i.e. the first-order 

sideforce,driving force and heeling moment.  Inherent in these forces and this moment are forces 

and moments of  second and higher order. Some terms of  the second-order quantities can be 

calculated within the linearized theory we use. The important quantity here is the second-order 

driving force, since it contributes to the yacht 's speed. Therefore we optimized this force under 

given constaints on the fist-order sideforce and heeling moment. Now our theoretical results 

could be used as follows. 

A yacht with given dimensions, sail area etc, sails to windward in a wind prot~de U(z), (3.1), 

with a thrue wind angle ~*,  (Fig. 3.1 ). We prescribe its heeling angle/3,where we take into account 

for example the fact that the wave resistance increases with increasing heeling angle. Then the 

first-order righting moment is known and hence the heeling moment.  Furtermore there are limits 

to the sideforce (and hence the driving force), for exemple because too large angles of  incidence 

willl cause flow separation. We assume that we know from experience the maximum first-order 

lift forces which can be generated by sails and underwatership. Due to these forces there exists 

a leeway angle X of  order e and a yacht's speed V of  zeroth order. In general the second-order 

driving force will not have its maximum value. Then here we can use our optimization theory 

to enhance the total driving force with more subtle methods than merely increasing the angles 

of  incidence. This larger driving force will cause an increase of V, so we have to start an iterative 

process to find the yacht 's final speed. We remark that it seems reasonable to expect an increase 

of  V of  order e since it is only the second-order driving force which has changed. So the increase 

of  V has to be added to the first-order apparent wind (3.6). 

Until now we have paid no attention to the other second-order quantities. In our theory we 

have demanded an equilibrium of sideforce and moment up to and including O(e) ((5.3) and 

(5.5)). There are left over a sideforce and a moment,  both of  order e 2 , which can cause errors 

in the prescribed sideforce and heeling moment and in the calculated second-order thrust. As 

we assume that a sideforce of  O(e) causes a leeway angle X of  O(e) it seems reasonable to expect 

a leeway angle of  order e 2 due to a sideforce of order e 2 . Then an error in the sideforce of  this 

order of magnitude has no consequences for the asymptotic accuracy of  our theory. A consider- 

ation, similar to that for the sideforce, does expect an error in the heeling angle/3 of  order e due 

to a moment of  order e 2 . (Here we assumed t3 to be of  order e°). It is easily seen, for example 

from (3.12) and (3.13), that a change in/3 of  order e yields a change in the sideforce of order 

e 2 . Hence also the thrust will change of  order e 2 and this is exactly the order of  magnitude within 

which we perform our optimization. Therefore if we want to apply our theory we have to require 

that the heeling angle keeps its prescribed value up to and including O(e). In practice this could 
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be achieved for example by giving the crew the proper positions. The consequences of the un- 

compensated second-order moment  can be bypassed by the theoretical trick of also considering 

the heeling angle/3 to be of order e. For heeling angles which do not exceed 25 ° this seems not  

unrealistic. Then the change in/3 will be of second order and hence the change in the sideforce 

is of order e 3 . We remark however that the assumption in the calculations of a constant heeling 

angle is of the same nature as the assumption of a constant yacht's speed V. 
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